Dear Mr. McDowell,

On behalf of the Soda Canyon group, I am forwarding peer reviews of the initial study's traffic report and noise assessment that we obtained from two qualified experts. We submit these under protest given the late provision of some of the supporting studies and information.

Please note both experts conclude that the analyses that the initial study relies on are flawed and do not accurately disclose the project's significant impacts.

The noise assessment also improperly defers study and mitigation of noise impacts to the future, after the project is already operational.

As we understand it, under CEQA if there is any substantial evidence that the project may have a significant impact on the environment, the County must prepare an EIR. In other words, if the County is presented with a “fair argument” that the project may have significant impacts, it should prepare an EIR even if the applicant's reports show the project will not have a significant effect. An EIR is plainly required here.

Sincerely,

Glenn Schreuder
July 18, 2016

Soda Canyon Group
c/o Glenn Schreuder
2882 Soda Canyon Road
Napa, CA 94558

Subject: Mountain Peak Winery Initial Study/Proposed Mitigated

Dear Mr. Schreuder:

Per your request, I have reviewed the record in the proposal to develop a winery and tasting facility at the Mountain Peak vineyard on Soda Canyon Road in Napa County (the “Project”). The record I have reviewed includes, but is not limited to, the Initial Study prepared by the County (the “IS”), the supporting traffic impact report prepared by Crane Transportation Group (the “TTG report”) and a draft peer review of the TTG report prepared by TJKM Associates. My qualifications to perform this review include registration as a Civil and Traffic Engineer in California and 48 years of consulting practice in traffic and transportation engineering. I have both prepared and reviewed the traffic and transportation components of numerous CEQA environmental documents and am familiar with traffic issues associated with development of winery and tasting facilities in Napa. My professional resume is attached herewith.

My current comments on the subject project follow.

1. The Findings of the Initial Study Do Not Reasonably Reflect the Conditions on Record With Respect to Traffic Safety Issues

The TTG report solely examined safety issues in the context of adequacy of sight distances at the Project driveways and concluded that sight lines and sight distance will be adequate as long as landscape in the vicinity is properly trimmed and maintained. However, the peer review considered safety issues on the
whole of Soda Canyon Road to the Project site and made findings of significance. The peer review found that Soda Canyon Road, a two-lane dead-end road, has very narrow pavement and sinuous horizontal and vertical alignments. The lane widths vary between 9 and 11 feet with the segments with widths below 10 feet being less than the minimum standard of the California edition of the Manual on Uniform Traffic Control Devices. Moreover, at many locations, effective pavement width is rendered substandard or further reduced from standard by badly deteriorated pavement conditions. The situation is further compromised by open roadside drainage with ditches unprotected by guardrail or paved or safely traversable shoulder. These factors cause drivers in both directions to drive positioned toward the center of the roadway. The safety compromise inherent is compounded by the sinuous horizontal and vertical alignment that, combined with effects of roadside vegetation and terrain, limits sight distance and causes opposed drivers operating near the center of the road to be unable to see each other soon enough to avoid hazardous conflict.

The peer review also provides a detailed summary of accident experience. It found that in the brief 14 month period between 1-21-13 and 3-27-14, there were 57 motor vehicle crashes, an extraordinary number involving a minor roadway that carries very light traffic volume. In light of this evidence, the County must conduct a thorough analysis of the causal factors involved in the crashes and determine what needs to be done to mitigate the situation, before it can support the conclusion reached without apparent substantiation in the IS. That conclusion is obviously contrary to evidence on record that there are significant traffic safety impacts involved.

The peer review reports that existing annual winery visitors traveling on Soda Canyon Road is 22,372 and that the Mountain Peak Project would add another 18,500 visitors1. In other words, the Project would increase the traffic of presumably unfamiliar visitors on the road by over 80 percent. This could significantly increase the crash incidence along Soda Canyon Road.

The condition regarding traffic safety in the IS reads “Would the project substantially increase hazards due to a design feature (e.g. sharp curves or dangerous intersections or incompatible uses (e.g. farm equipment)?)” The evidence on the record overwhelmingly indicates it would. Reasonable compliance with the good faith effort to disclose impacts required by CEQA necessitates that the County’s IS make the finding on this item of “Potentially Significant Impact” unless plausible mitigation were proposed which has not been the case to date.

Moreover, in the event a crash on Soda Canyon Road resulted in liability claims against the County, although the County would no doubt attempt to claim design

1 These numbers do not include employees, shift workers, residents or service vehicles on Soda Canyon Road.
immunity due to the fact that the roadway predates modern design standards, the safety evidence on record in this matter could make the County liable for, while understanding the inherent design and safety defects of the road, knowingly approving a project that would significantly increase unfamiliar visitor traffic on Soda Canyon Road traffic and significantly incrementing truck traffic without acknowledging and mitigating the safety issues.

Producing 100,000 gallons of wine will require about 667 tons of grapes. The estate vineyards can be expected to produce about 160 tons. So the winery will have to import about 507 tons of grapes from elsewhere, and to comply with the 75 percent rule, all but about 167 tons will have to come from somewhere in Napa. In regard to truck traffic, the CTG report claims that the Project will reduce truck traffic on Soda Canyon Road because the imported grapes will come from immediately neighboring vineyards. However, we have seen nothing on record that the Project has letters of commitment from adjacent vineyards and there is a good probability that established vineyards already have commitments elsewhere. So to comply with the good faith effort to disclose impacts demanded by CEQA, the CTG report should have assumed that trucks carrying all of the imported grapes would travel the length of Soda Canyon Road from Silverado trail to and from Mountain Peak. So in considering the overall conclusion about the impact of the Project on the real safety issues that exist along Soda Canyon Road, the County should be disabused of the notion that the Project will somehow reduce truck traffic on that road. In sum, the information in the record as provided to us indicates the Mountain Peak Project certainly may, and likely would, have a significant impact on transportation safety along Soda Canyon Road.

2. The Intersection Evaluations In the CTG Report Failed to Consider Consequences of Queuing and Queue Storage.

The CTG report finds that the intersection of Soda Canyon Road with Silverado Trail already operates at deficient levels of service in the Friday and Saturday afternoon peaks, but concludes that because the Project does not add 1 percent to the total traffic at this location, the Project’s impacts are less than significant. However, this conclusion does not consider the details of the geometry at that intersection or the impacts that changes in queueing resultant from small changes in traffic can have, given that geometry. The figure on the following page shows a scale aerial photo of the Silverado Trail / Soda Canyon Road intersection. Measurements show that if more than 4 vehicles are queued in the left turn pocket from southbound Silverado to northeasterly-bound Soda Canyon, the queued vehicles will start to extend into and obstruct the southbound Silverado through lane. If more than three vehicles queue in the southwesterly bound lane of Soda Canyon access and egress to the entries/exits to the Soda Canyon side of the Soda Canyon Store / Brookdale Vineyards parking will be blocked. Both of these situations have serious operational and safety
implications. And since the Friday and Saturday afternoon peak operations are already deficient at this location, it is probable that queues at the limits described above already exist and that even small additions to traffic could seriously exacerbate the queues, causing a significant impact.

3. The CTG Report Compiles Project Trip Generation Vastly Lower Than If Compiled At Rates Ordinarily Recognized As Representative By Napa County. This Renders The CTG Reports’ Conclusions About Level of Service and Project Traffic Impacts Inaccurate and Irrelevant

Based on information on employee, visitor special event staff and wine production totals contained in the CTG Report, we compiled the Mountain Peak Project trip generation per the rates and procedures detailed on the Winery Traffic Information / Trip Generation Sheet (the WTI / TGS) which is page 15 of the Napa County Planning, Building and Environmental Services Use Permit
Application. This page of the application contains various trip factors known to the County to be most representative of local winery traffic conditions. A copy of the completed sheet is inserted herein. The table below compares Mountain Peak Traffic compiled per the County’s WTI/TGS sheet to the traffic estimated in the CTG Report.

Mountain Peak Project Trip Generation Comparison:
Winery Traffic Information / Trip Generation Sheet vs. Crane Transportation Group Report

<table>
<thead>
<tr>
<th></th>
<th>WTI / TGS¹</th>
<th>CTG Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekday PM Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvest</td>
<td>N/A</td>
<td>11²</td>
</tr>
<tr>
<td>Non-Harvest</td>
<td>49</td>
<td>11²</td>
</tr>
<tr>
<td>Saturday PM Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvest</td>
<td>135</td>
<td>10²</td>
</tr>
<tr>
<td>Non-Harvest</td>
<td>60</td>
<td>10²</td>
</tr>
<tr>
<td>Largest Marketing Event</td>
<td>107</td>
<td>49³</td>
</tr>
</tbody>
</table>

1. Compiled per page 15 of Napa Co. Planning, Building and Environmental Services Use Permit Application using employee, visitor, special event staff and wine production totals contained in the CTG Report. Annual tons of grape on-haul estimated based on net tons required for 100,000 gallon production less tonnage produced by 40 acre estate vineyard.
2. Per CTG Report, Table 16.
3. Per CTG Report, Table 18. (CTG reports in Table 18 footnote that for maximum events some visitors will be shuttled from off-site parking areas like hotels.) Apparently the expectation is that about 63 visitors will be shuttled both ways.

As can be seen in the comparison table, the CTG Reports trip totals are vastly less than if compiled by the County’s recognized trip rates – so much so that they can have no credibility. Since everything in the traffic analysis flows from the trip generation, this renders the findings of the CTG Report meaningless. The entire analysis should be redone using the County’s authorized rates and procedures per page 15 of the Use Permit Application Form and the additional guidance on page 16 of the same document.

We note that if the WTI/TGS values are used, on a harvest Saturday, the Project comes within one trip of adding traffic to the Soda Canyon /Silverado Trail intersection that would exceed 1 percent of the existing traffic. Hence, for a variability of but one trip, the Project would be considered significantly impactful. Also, had a queuing analysis at this intersection been performed, the higher Project traffic values in the WTI/TGS sheet would surely have significantly altered queue overspill creating further hazardous conflict.
<table>
<thead>
<tr>
<th>Traffic during a Typical Weekday</th>
<th>Traffic during a Typical Saturday</th>
<th>Traffic during a Crush Saturday</th>
<th>Largest Marketing Event- Additional Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of FT employees: 19 x 3.05 one-way trips per employee = 58 daily trips.</td>
<td>Number of FT employees (on Saturdays): 16 x 3.05 one-way trips per employee = 48.8 daily trips.</td>
<td>Number of FT employees (during crush): 19 x 3.05 one-way trips per employee = 58 daily trips.</td>
<td>Number of event staff (largest event): 7 x 2 one-way trips per staff person = 14 trips.</td>
</tr>
<tr>
<td>Number of PT employees: 4 x 1.90 one-way trips per employee = 7.6 daily trips.</td>
<td>Number of PT employees (on Saturdays): 0 x 1.90 one-way trips per employee = 6 daily trips.</td>
<td>Number of PT employees (during crush): 4 x 1.90 one-way trips per employee = 7.6 daily trips.</td>
<td>Number of visitors (largest event): 125 1.8 visitors per vehicle x 2 one-way trips = 89 trips.</td>
</tr>
<tr>
<td>Average number of weekday visitors: 30 / 2.6 visitors per vehicle x 2 one-way trips = 61.5 daily trips.</td>
<td>Average number of weekend visitors: 80 / 2.8 visitors per vehicle x 2 one-way trips = 115.74 daily trips.</td>
<td>Average number of weekend visitors: 80 / 2.8 visitors per vehicle x 2 one-way trips = 115.74 daily trips.</td>
<td>Number of special event truck trips (largest event): 2 x 2 one-way trips = 4 trips.</td>
</tr>
<tr>
<td>Gallons of production: 100,000 / 1,000 x .009 truck trips daily^3 x 2 one-way trips = 128.9 daily trips.</td>
<td>Gallons of production: 100,000 / 1,000 x .009 truck trips daily^3 x 2 one-way trips = 128.9 daily trips.</td>
<td>Gallons of production: 100,000 / 1,000 x .009 truck trips daily^3 x 2 one-way trips = 128.9 daily trips.</td>
<td>Total = 107 trips.</td>
</tr>
<tr>
<td>Total = 128.9 daily trips.</td>
<td>Total = 105.94 daily trips.</td>
<td>Total = 60.3 PM peak trips.</td>
<td></td>
</tr>
<tr>
<td>Number of total weekday trips x .58 = 48.98 PM peak trips.</td>
<td>Number of total Saturday trips x .57 = 60.3 PM peak trips.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^3 Assumes 1.47 materials & supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year (see Traffic Information Sheet Addendum for reference).

^4 Assumes 4 tons per trip / 36 crush days per year (see Traffic Information Sheet Addendum for reference).
4. Conclusion

This concludes my comments on the Mountain Peak Winery Initial Study transportation component and proposed Mitigated Negative Declaration. Based on the foregoing, I am convinced that the findings of the Initial Study are contrary to the record or inadequately supported and believe there is fair argument that a full Environmental Impact Report that focuses on the traffic safety issues involved should be prepared.

Sincerely,

Smith Engineering & Management
A California Corporation

Daniel T. Smith Jr., P.E.
President

Attachments:
Resume of Daniel T. Smith Jr., P.E.
SMITH ENGINEERING & MANAGEMENT

DANIEL T. SMITH, Jr.
President

EDUCATION
Bachelor of Science, Engineering and Applied Science, Yale University, 1967
Master of Science, Transportation Planning, University of California, Berkeley, 1968

PROFESSIONAL REGISTRATION
California No. 21913 (Civil) Nevada No. 7599 (Civil) Washington No. 29337 (Civil)
California No. 938 (Traffic) Arizona No. 22131 (Civil)

PROFESSIONAL EXPERIENCE
Smith Engineering & Management, 1993 to present, President.
DKS Associates, 1979 to 1993, Founder, Vice President, Principal Transportation Engineer.
De Lann, Cather & Company, 1968 to 1979, Senior Transportation Planner.
Personal specialties and project experience include:

Litigation Consulting. Provides consultation, investigations and expert witness testimony in highway design, transit design and traffic engineering matters including condemnation involving transportation access issues; traffic accidents involving highway design or traffic engineering factors; land use and development matters involving access and transportation impacts; parking and other traffic and transportation matters.

Area Transportation Plans. Principal-in-charge for transportation element of City of Los Angeles General Plan Framework, shaping nations largest city two decades into 21 st century. Project manager for the transportation element of 300-acre Mission Bay development in downtown San Francisco. Mission Bay involves 7 million gsf office/commercial space, 8,500 dwelling units, and community facilities. Transportation features include relocation of commuter rail station; extension of MUNI-Metro LRT; a multi-modal terminal for LRT, commuter rail and local bus; removal of a quarter mile elevated freeway; replacement by new ramps and a boulevard; an internal roadway network overcoming constraints imposed by an internal tidal basin, freeway structures and rail facilities; and concept plans for 20,000 structured parking spaces. Principal-in-charge for circulation plan to accommodate 9 million gsf of office/commercial growth in downtown Bellevue (Wash.). Principal-in-charge for 64 acre, 2 million gsf multi-use complex for FMC adjacent to San Jose International Airport. Project manager for transportation element of Sacramento Capitol Area Plan for the state governmental complex, and for Downtown Sacramento Redevelopment Plan. Project manager for Napa (Calif.) General Plan Circulation Element and Downtown Riverfront Redevelopment Plan, on parking program for downtown Wolfram Creek, on downtown transportation plan for San Mateo and redevelopment plan for downtown Mountain View (Calif.), for traffic circulation and safety plans for California cities of Davis, Pleasant Hill and Hayward, and for Salem, Oregon.
Transportation Centers. Project manager for Daly City Intermodal Study which developed a $7 million surface bus terminal, traffic access, parking and pedestrian circulation improvements at the Daly City BART station plus development of functional plans for a new BART station at Colma. Project manager for design of multimodal terminal (commuter rail, light rail, bus) at Mission Bay, San Francisco. In Santa Clarita Long Range Transit Development Program, responsible for plan to relocate system's existing timed-transfer hub and development of three satellite transfer lobbies. Performed airport ground transportation system evaluations for San Francisco International, Oakland International, Sea-Tac International, Oakland International, Los Angeles International, and San Diego Lindberg.

Campus Transportation. Campus transportation planning assignments for UC Davis, UC Berkeley, UC Santa Cruz and UC San Francisco Medical Center campuses; San Francisco State University; University of San Francisco; and the University of Alaska and others. Also developed master plans for institutional campuses including medical centers, headquarters complexes and research & development facilities.

Special Event Facilities. Evaluations and design studies for football/baseball stadiums, indoor sports arenas, horse and motor racing facilities, theme parks, fairgrounds and convention centers, ski complexes and destination resorts throughout western United States.

Parking. Parking programs and facilities for large area plans and individual sites including downtowns, special event facilities, university and institutional campuses and other large site developments, numerous parking feasibility and operations studies for parking structures and surface facilities, also, resident preferential parking.

Transportation System Management & Traffic Restraint. Project manager on FHWA program to develop techniques and guidelines for neighborhood street traffic limitation. Project manager for Berkeley, (Calif.), Neighborhood Traffic Study, pioneered application of traffic restraint techniques in the U.S. Developed residential traffic plans for Marin Park, Santa Monica, Santa Cruz, Mill Valley, Oakland, Palo Alto, Piedmont, San Mateo County, Pasadena, Santa Ana and others. Participated in development of photo/radar speed enforcement device and experimented with speed humps. Co-author of Institute of Transportation Engineers reference publication on neighborhood traffic control.

Bicycle Facilities. Project manager to develop an FHWA manual for bicycle facility design and planning, on bikeway plans for Del Mar, (Calif.), the UC Davis and the City of Davis. Consultant to bikeway plans for Eugene, Oregon, Washington, D.C., Buffalo, New York, and Skokie, Illinois. Consultant to U.S. Bureau of Reclamation for development of hydraulically efficient, bicycle safe drainage inlets. Consultant on FHWA research on effective retrofits of underscoring and overcrossing structures for bicyclists, pedestrians, and handicapped.

MEMBERSHIPS
Institute of Transportation Engineers Transportation Research Board

PUBLICATIONS AND AWARDS
Co-recipient, Progressive Architecture Citation, Mission Bay Master Plan, with I.M. Pei WRT Associated, 1984.
Improving The Residential Street Environment, with Donald Appleyard et al., U.S. Department of Transportation, 1979.
Planning and Design of Bicycle Facilities: Pitfalls and New Directions, Transportation Research Board, Research Record 570, 1976.
18 July 2016

Soda Canyon Group
Attn: Mr. Glenn Schreuder
2882 Soda Canyon Road
Napa, California 94558

Subject: Mountain Peak Winery (Use Permit #P13—00320-UP)
Review of Noise Analysis

Dear Mr. Schreuder:

As requested, we have reviewed the noise analysis and the Initial Study/Negative Declaration (IS/ND) for the proposed project at Mountain Peak Winery in Napa County, California. This letter discusses elements of the IS/ND noise analysis that we find deficient in some way.

Wilson, Ihrig & Associates, Acoustical Consultants, has practiced exclusively in the field of acoustics since 1966. During our 50 years of operation, we have prepared hundreds of noise studies for Environmental Impact Reports and Statements. We have one of the largest technical laboratories in the acoustical consulting industry. We also utilize industry-standard acoustical programs such as Environmental Noise Model (ENM), Traffic Noise Model (TNM), SoundPLAN, and CADNA. In short, we are well qualified to prepare environmental noise studies and review studies prepared by others.

The documents we have reviewed and referenced are:

2. Appendix C, Initial Study Checklist, Mountain Peak Winery, Use Permit #P13-00320-UP, County of Napa; Planning, Building, and Environmental Services Dept., 27 June 2016.
Issue #1: Noise analysis fails to identify exposure of persons to noise levels in excess of local standards

Table 3 of the Noise Assessment presents the ostensible time-delineated noise limits for the project obtained by applying the time-delineated noise standard adjustments in the Napa County Noise Ordinance to the baseline Exterior Noise Limits established in Table 8.16.070 of the Ordinance. We agree that these are applicable standards for most types of noise, however, as the Noise Assessment itself points out, another provision of the Noise Ordinance provides that:

In the event the alleged offensive noise . . . contains music or speech, the standard limits set forth in Tables 8.16.060 and 8.16.070 shall be reduced by five dB, but not lower than forty-five. [Napa Co. Code of Ordinances, Section 8.16.070(B)]

Table 9 of the Noise Assessment presents the estimated noise levels for special events which, as discussed in the paragraph preceding Table 9, are comprised of noise from music and raised conversation. Therefore, the limits presented in Table 9 of the Noise Assessment should all be 5 dB less than those presented in Table 3 of the Noise Assessment, though not below 45 dBA. In particular, the L_{50} daytime limit for speech and music should be 45 dBA. As the Noise Assessment’s own calculations indicate, the expected L_{50} noise levels from special events at Residences 1 and 2 are 48 and 47 dBA, respectively. As these levels exceed a local standard, they comprise a significant noise impact of the proposed project.

Issue #2: Noise analysis fails to identify a substantial periodic increase in ambient noise levels above the existing levels

In addition to exceeding the local standard, the noise from large special events will fundamentally change the character of the neighborhood near the proposed operation. Quantitatively, this can be seen easily by comparing the special events noise estimates with the existing ambient noise levels as is done in Figure 1, below. In this figure, the colored solid lines show the existing ambient noise levels, and the colored dashed lines show the projected, special event noise levels. The colors – red, yellow, and blue – represent the three nearest residences. The solid black line is the correctly applied local noise ordinance limits for the various noise metrics. The key point here is that the L_{50} levels – the noise levels exceeded 30 minutes during the hour – are substantially higher than the existing ambient levels. The situation will be worst at Residence 1 where the special event noise level will be 20 dB higher than the ambient. As the Noise Assessment itself points out, “Each 10 decibel increase in sound level is perceived as approximately a doubling of loudness over a fairly wide range of intensities”. [Noise Assessment at p. 2] This means a 20 dB increase is perceived as a quadrupling of loudness. At the other residences, the noise will be some 11 to 13 dB higher, somewhat more than a doubling of loudness.

As Figure 1 indicates, the noise from large gatherings of people is fairly consistent – that is why the dashed lines are fairly flat across the page. This means that during the special events, the soundscape at the neighbor’s homes will be dominated by the special event noise. Because the
special events will cause substantial periodic increases in noise levels above the existing ambient noise levels, these noise levels also comprise a significant noise impact of the proposed project.

* * * * * * * *

Please call us if you have any questions regarding this review.

Very truly yours,

WILSON IHRIG

Derek L. Watry
Principal
FIGURE 1 NOISE FROM SPECIAL EVENTS
DEREK L. WATRY, M.S.

Experience

Wilson, Ihrig & Associates, Inc. (1992 to Present)
Principal
Mr. Watry is experienced in all aspects of environmental acoustics, including noise measurement and prediction, regulatory analysis, environmental impact assessment, and noise control design. He is well versed in the requirements of CEQA, and has both prepared and critiqued many environmental noise studies. Over the past 18 years, he has conducted numerous construction, traffic, HVAC, and industrial equipment noise projects, and has extensive experience with construction noise and vibration monitoring.

University of California, Berkeley (1988 - 1992)
Graduate Student, Research and Teaching Assistant
Teaching Assistant for "Fundamentals of Acoustics" course

Education
M.S. (1991) in Mechanical Engineering, University of California at Berkeley
B.S. (1988) in Mechanical Engineering, University of California at San Diego
M.B.A. (2000), Saint Mary's College of California, Moraga

Professional Associations
Member, Acoustical Society of America
Member, National Council of Acoustical Consultants

Academic Distinctions
Summa Cum Laude, Saint Mary's College of California (2000)
National Science Foundation Fellowship Recipient (1988 - 1991)
Summa Cum Laude, University of California, San Diego (1988)

Representative Projects
Patterson Ranch EIR, Fremont
Noise section of EIR for 428 acre project that included residential, educational, religious, community recreation, and commercial land uses.
Mare Island Dredged Material Disposal Facility EIR, Vallejo
EIR noise study for proposed disposal facility to be built next to residential neighborhood.

Silva Ranch Annexation EIR, King City
EIR noise study for development of new, large, primarily residential, district on the outskirts of King City.

525 Golden Gate Avenue Demolition, San Francisco
Noise and vibration monitoring and consultation during the demolition of multi-story office building next to Federal, State, and Municipal Court buildings in San Francisco.

Tyco Electronics Annual Noise Compliance Study, Menlo Park
Conducted annual noise compliance monitoring for Tyco Electronics in 2009 and 2010. Provided letter critiquing the regulatory requirements and recommending improvements.

Safeway Redevelopment, Sunnyvale
Noise study of store redevelopment including loading dock, trash compactor, parking lot, and rooftop HVAC equipment.

Safeway Redevelopment, Los Altos
Noise study of store redevelopment including loading dock, trash compactor, rooftop parking lot, rooftop HVAC equipment, and Foothill Expressway traffic noise.

Central Park Apartments Noise Study, Mountain View
Noise study for new residential building development. Major noise sources included Central Expressway and Caltrain.

465 N. Whisman Road, Mountain View
Noise control among suites in a low-rise office complex.

Caltrain Centralized Equipment Maintenance and Operations Facility, San Jose
Noise study of impacts for new maintenance and operations facility built next to existing residential neighborhood. Included analysis of 16 ft sound barrier wall.

Conoco-Phillips Refinery Noise Control, Rodeo
Environmental noise study and assessment of refinery noise at residential neighborhood.

Groth Winery HVAC Sound Barrier, Oakville
Design of sound barriers to control noise from rooftop HVAC equipment.

Dahl Booster Pump Station, Palo Alto
Design of sound barrier and specification of mufflers for pump station equipment.